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Abstract— Implementation of a linear Robust Predictive 

Controller (RPC) into a FPGA with 20 MHz fixed clock is 

presented in this work. The design of the controller is based on a 

single input-single output Auto Regressive Integrated Moving 

Average (ARIMA) Model. To take into account the uncertain 

systems behaviour, the parametric polytopic uncertainties are 

adopted. Supported on worst case strategy, by the resolution of a 

min-max optimization problem the control law is obtained. Since 

the performance criterion to be optimized is non-convex, a non-

determinist global optimization method based on Genetic 

Algorithms (GA) is proposed to solve this problem. The efficiency 

of the proposed approach is demonstrated with the RPC 

implementation on a Nanoboard 3000XN FPGA platform chip 

using the Altium Designer such a conception environment. 

  

Keywords— FPGA, Robust Predictive Control, global optimization, 

Genetic Algorithm, Altium Designer. 

I. INTRODUCTION 

Some control technique requires a numerical model 
intending to predict the future behavior of the system [1]. 

Thereby, the precision degrees of the considered model cheek a 

significant role on the controller effectiveness. Therefore, it is 

necessary to use a controller which ensures the desired 

performances in the presence of uncertainties [9]. In this case, 

we talk about robust control. Certainly, predictive control took 

advantage to exploit systems power of embarked systems on the 

control processes and also the evolution of the optimization 

algorithms which became faster [2]. 

In real-time applications managed using intelligent 

technology, with the technological advancement in the field of 
microelectronics, new hardware design solutions such as Field 

Programmable Gate Array (FPGA), Application Specific 

Integrated Circuit (ASICs) are available and can be used as 

digital targets for implementation of the control algorithms in a 

single component [7], [8]. The advantages of such an 

implementation are multiple: the reduction of the execution 

time by adopting parallel processing, the rapid prototyping of 

the numerical control on FPGA, the confidentiality of the 

architecture [13], the possibility of applying intelligent 

commands that have recourse to heavier techniques in terms of 

computing time and improving the quality of control of 

industrial process by exploiting the new digital systems 
technologies [17]. Nowadays, all of these advantages form a 

need and a necessity for the control of industrial systems 

characterized by high performance [15]. The concept of 

robustness has emerged to handle a set of analysis and synthesis 

problems especially for systems, whose models aren’t precisely 

known [12]. When the structure of the model is uncertain, by 

adopting the worst case strategy, the calculation of the robust 

predictive control law amounts to minimizing the maximum of 

a criterion with respect to the control signal, taking into account 

all the possible models described by the set of uncertainties such 

as parametric uncertainties and polytopic uncertainties [5]. 

Therefore, the control law is obtained by solving a min-max 
optimization problem [6]. The cost function to be optimized for 

the robust predictive control is non-convex opposite the 

uncertainties. Also by using a local optimization technique non 

optimal control law is obtained. So we proposed global 

optimization algorithms as genetic algorithms (GA) method [3], 

[14] which uses stochastic rules and decisions in order to 

provide the global solution and has known a considerable 

interest in predictive control. 

It is in this spirit that we develop this work which is 

interested in the synthesis of a robust control law implemented 

into Nanoboard 3000XN FPGA platform, based on a linear and 

uncertain ARIMA model which can manipulate unstable open 
loop systems and decrease the number of model parameters. 

The remainder of the paper is organized as follows: section II 

presents theoretical formulation of RPC. Section III gives the 

details of RPC algorithm implementation on FPGA. Section IV 

shows simulation results. The conclusion is provided in section 

V. 

II. PROBLEM FORMULATION OF RPC  

A. Linear model 

In this section, the output predictions are presented by 

ARIMA model: 

                              
-1

-1

B(q )
Δy(k)= Δu(k)

A(q )
                      (1) 

where y(k) is the system output and u(k) is the system input. The 

term -1Δ= 1- q
 
is the integral action that allows the cancellation 

of the static error. A(q-1) and B(q-1) are polynomials of degrees 

respectively na and nb in backward shift operator q-1 which are 

bounded and uncertain to take into account the uncertain 

behavior of the system. These polynomials are given as follows: 

 
na

-1 -i

i i i i a

i=1

A q = 1+ a q   ,   a a ,a ,i = 1,…,n 
 

                     

(2) 

nb
-1 -i

j j j b

j=1

B(q )= b q ,b b ,b , j = 1,…,n 
  j

                             

(3) 

with ai and a̅i are respectively the lower and the upper bounds 

of ai,  bj and b̅j are respectively the lower and the upper bounds 

of bj.  

Therefore, the output prediction 𝑦̂(𝑘 + 𝑗) can be obtained 

by a multiple recursion using relation (1): 
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j -i+1 l

i=1

y(k + j)= g Δu(k +i -1)+ y (k + j)  for 𝑗 ≥ 1               (4)
 

with: 

1 1

j-1

j j i-1 i j -i

i=1

g = b

g = b + (a - a )g









                                                   (5) 

and: 

na nb

l i i

i=1 i=2

min(j-1,na)nb

l j-1 i i-1 i l

i= j+1 i=1

y (k +1)= y(k)- a Δy(k +1- i)+ b Δu(k +1- i)

y (k + j)= a y(k)+ b Δu(k + j - i)+ (a - a )y (k + j - i)








 

 
 

(6) 

B. Control law 

Robust predictive control requires online optimisation of the 

following min-max optimisation problem: 

                          min max
ΔU ψ

- J                                              (7) 

where ∆𝑈 is the vector of future optimized control increments, 

ψ  represents the set of uncertainties and J  denotes the desired 

performances and presented by the following Quadratic 

Problem (QP) [23]: 

         
N -1

2

c

j=0

J = (y (k + j)- y(k + j)) + λ Δu(k + j)


 2ˆ
y u

i

N

j N

          (8) 

with 𝑦̂(𝑘 + 𝑗): predicted output. 𝑦𝑐(𝑘 + 𝑗): set point. 𝜆: 

weighting on the future increment control. Δ : incremental 

operator. ( )u k : the input control. ,y uN N  and 
iN  denote the 

output prediction horizon, control horizon and the initial 

prediction horizon respectively. 

We can solve the optimisation problem (7) in two steps; 

starting by the calculation of the parameters that maximize the 

cost function J , and next, we minimise it facing the input 

control:  

                       
 *min max min

ΔU ΔUψ
- J = J ΔU                        (9) 

with                              max*

Ψ
J ΔU = J                              (10) 

We can show that the cost function J  to be optimized is 

non-convex opposite the adopted uncertainties. Therefore, the 

optimization problem (10) is non-convex. The use of a local 

optimization method such as the gradient algorithm leads to 

non-optimal control law. In the next section, we propose global 

optimization algorithm to solve this problem. 

C. Genetic Algorithms 

Genetic algorithms (AG) are stochastic optimization 

algorithms based on the mechanisms of natural selection and 

genetics [14]. However, the natural processes to which they 

refer are much more complex. The individual in a population is 

represented by a chromosome consisting of genes that contain 

the hereditary characteristics of the individual. The principles of 

selection, crossing and mutation are inspired by natural 
processes of the same name. 

To use a genetic algorithm on a particular problem, the 

following elements must be available: 

 Codification: 

This step consists to describe each individual by a string of 

alphabet which can be binary, real, symbol or any other [3]. In 

this work we have chosen the real codification because our 

parameters are real. This description is called chromosome and 

a set of chromosome presents a population. 

 Fitness function: 

The variable to be optimized can be, for example, 

consumption, yield, transmission factor, profit, cost, 

development time etc. Thus, an optimization algorithm requires 

the definition of a function called fitness function which allows 

evaluating of the potential solutions from the variable to be 

optimized. As a result, the algorithm converges towards an 

optimum of this function [3]. 

 Generation of a new population:  

The initial population 
0pop  is generated randomly, then for 

each individual the evaluation function 
if  is calculated; from it 

we obtain the new population using the three genetic steps 

illustrated as follow: 

- Selection: the aim of selection is to retain the best individuals 

to ensure the convergence of the algorithm. Tournament 

selection is an alternative to proportional selection. This step is 

described in algorithm 1. 

Algorithm 1: selection step of GA 

1: Evaluation of population individuals: 𝑓𝑗 

2: Calculate the total sum of population: 
1

n

j

j

F f


   

 𝑛: number of population chromosomes. 

3: Calculate the selection probability: 
j

jP
F

f
   

4: Calculate the cumulative probability: 𝑞𝑗 = 𝑃1 + ⋯ + 𝑃𝑗  

5: Beginning selection:  

 Generate randomly 0 ≤ 𝑟 ≤ 1 

 If 𝑟 < 𝑞1 then select the chromosome 𝑃0 

 Else  

o for j from 1 to n 

o If 𝑞𝑗−1 ≤ 𝑟 ≤ 𝑞𝑗  

o then select the chromosome 𝑃𝑗  

o End if 

o End for 

 End if  

6: End selection  

- Crossover: the crossing operator is active, with a probability

cP , a pair of parent chromosomes 
1P  and 

2P  returns a 

chromosome child 𝐶 using the arithmetic crossing. The 
recommended values for the crossover probability parameter 

are 0.95cP   from [9] and  0.75,0.95cP   from [10]. In this 

step, the population will be divided on two parts, the 

chromosomes of the first part will be cross two by two, and the 

chromosome children obtained from each cross will be injected 
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into the second half of the population as it is shown in the 

algorithm 2. the arithmetic crossing is defined by: 

    c 1 c 2C = P P + 1- P P                         (11) 

Algorithm2: Crossover step of GA 

1: Define the crossover probability parameter 
cP   

 For i from n/2 to n do 

             
1 2( ) (1 )c n i c n iC i P P P P         

 End for 

 

Mutation: in order to furnish genetic diversity, with a 

probability
mP , this step enables the spontaneous transform of 

an individual, which randomly generates directions that are 

adaptive with respect to the last successful or unsuccessful 

generation, is considered. This step is described in algorithm 3. 

Algorithm3: Mutation step of GA 

1: Define the mutation probability parameter 
mP   

2: Generate randomly 0 1r   : 

 For i from 0 to n/2 do 

             If 
mr P  then  

0( ) (0)nextPOP i POP   

 with 
nextPOP  is the next population.  

End if 

 End for 

 Stopping conditions:  

Stopping the algorithm is conditioned by the validation of 
certain criteria which may be the maximum number of 

generations or when the individuals of a population don’t evolve 

more rapidly or the maximum time of execution or even a 

combination of these criteria. 

III.  IMPLEMENTATION OF LINEAR RPC ON FPGA 

This section presents the method to implement the RPC 

algorithm on the Map Nanoboard 3000XN supporting Xilinx 

FPGA. 

A. Nanoboard 3000XN 

The Nanoboard 3000XN map with a fixed Xilinx Spartan-

3AN device (XC3S1400AN-4FGG676C) is crucial for the 

speedy progression of the systems embedded with the Altium 

Designer. It is a platform of a reprogrammable design material 

that exploits the power dedicated to the electronic conception of 

high capacity, allowing the fast implementation and the 

debugging of our interactive conceptions [16]. This map is 

constituted by several material modules which realize 

miscellaneous tasks according to the designer's needs, such an 

integrated color TFT LCD panel (240x320), an SVGA interface 

(24-bits, 80 MHz), a programmable clock (6 to 200 MHz) and 

a fixed one (20 MHz) both available to FPGA users, a 4-

channels 8-bits ADC, and 4-channels 8-bits DAC. 
B. RPC conception 

Fig. 1 presents the solution for the custom hardware. The 

predictive algorithm is implemented in C++ and compiled for a 

Nanoboard 3000XN XC3S1400AN-4FGG676C FPGA. In 

addition, a TFT screen shows the evolution of the output and 

control action. 

 The first step of the prediction process is for a sample cycle k  
such that the FPGA calculates the output data 𝑦(𝑘) of the 

system. 
 The second step consists to maximize the cost function J to 

estimate the optimal model parameters 𝑎𝑖 𝑜𝑝 and 𝑏𝑗 𝑜𝑝 , using 

the GA such a non determinist optimized method. 
 In the next step, the state observer prepares the data 

calculating the free responses 𝑦𝑙 to feed into the genetic 

algorithm Min-Max-Problem(Min-Max-P) solver. 

 Then the Min-Max-P is solved to give a new sequence of the 

control action. Only one control signal, 𝑢(𝑘) is implemented 
on the plant while the others are rejected, due to the next 

sampling instant, 𝑦(𝑘 + 1) is known. 

 The LCD screen is used to display the evolutions of output 

and control action signals. 

 The first step is repeated with the updated value and all 

sequences are brought up to date. 

 
Fig. 1: Structure of the implemented RPC. 

C. Hardware architecture  

The model given in Fig. 2 approves the designer to construct a 

processor-based system with a more rational and abstract 

approach. In this design, a processor TSK3000 is founded to 

ensure the execution of a software application, which is a 32- 

bit RISC processor. Most of its instructions are 32 bits wide and 

run in a single clock cycle. Moreover, there is a memory SRAM 

to store the data, a controller TFT_VGA to pilot the display of 

signals on the LCD screen, and two wishbones (one for 

interconnection and one for arbitration). 

D. Software architecture 

The important step in the software process is the choice of 

libraries, as the absence of one library can generate some errors 

at compilation, so the user must comprehend the utility of each 

unit before using it [16]. The LCD module of the card 

Nanoboard 3000XN is utilized where the function name of each 

library provided by the map shown in Table I is needed. 
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In order to use the RPC controller algorithm, the steps illustrated 

in the flowchart of Fig. 3 must be followed. 

 
Fig. 2: Hardware architecture for RPC 

 
Fig. 3: Flowchart of the robust predictive control algorithm 

IV.  SIMULATION RESULTS 

In this section, linear robust predictive controller based on 

ARIMA model proposed in this work is implemented into the 

map Nanoboard 3000XN which support an FPGA from the 

Xilinx family. The RPC scheme is designed with the following 

parameters: 

- ARIMA model: 
-1

-1

B(q )
Δy(k)= Δu(k)

A(q )
 

where :

 
 -1A q = 1+a q , 1

1
-1B(q )= b 1

1q    
 

- Constraints on input signal: 0 ( ) 5v u k v   

- Constraints onto parameters 𝑎1 and 𝑏1: 

           
10.99 0.4a   

      
and      

10.4 0.8b   

- Fitness function: is defined by the cost function to be 

optimized. 

- Population size: is defined by the parameter n. A several test 

are used to determine the optimal size. 

-  Stopping criteria: is defined by the parameter num and it's 

specified by the maximum number of generations. 

- Crossover and mutation probabilities: P = 0.3m  and 

P = 0.75c   

Two cases are envisaged to test the efficient of the GA. 

Case 1: 𝑎1 and 𝑏1 are fixed 

We suppose that the system is characterized by the following 

fixed parameters: 
1 1a = -0.97, b = 0.6  for i=1, .., 100 

Case 2: 𝑎1 and 𝑏1 are variables 

Assume that the system used is characterized by the following 

parameters: 
1 1a = -0.97, b = 0.6  for i=1, .., 30 

  
1 1a = -0.5, b = 0.4     for i=31, ..., 70 

1 1a = -0.97, b = 0.6 
 
for i=71, ..., 100 

It should be noted that for the two cases even if the parameters 

𝑎1, 𝑏1 and 𝑢 are multiplied by the crossover probability 

parameter in the genetic algorithm, their values always remain 

in the constraint interval and by the consequence children are 
always feasible with respect to linear constraints and bounds. 

A. Model parameters estimation 

To solve the optimisation problem (7), calculation of the 

parameters that maximize the cost function J  is required. In 

this step the genetic algorithm is used as a global optimization 

method to find, at each iteration, the model parameters. The size 

of the initial population is dim (𝑃0) = (𝑛𝑢𝑚, 3) and it's defined 

as follows: 

                           

11 11 1

0

1 1num num num

a b u

P

a b u

 
 

  
 
 

  

The first and the second columns are reserved to the model 

parameters and the third one is dedicated to the control input.  

For each population individual  i 1i 1i iind = a ,b ,u ,i = 1,…,num

, we compute the prediction sequence  ˆ y k + j , yj = 1…N    

and we evaluate the performance criterion J given by (8). Based 

on the criterion values (fitness), the GA operators (selection, 

crossover and mutation) are applied in order to find the next 

population individuals. The procedure will be repeated until a 

stopping criterion is reached. Then, the parameters of the worst 

case model are obtained.  

For the second optimization problem, we use the following 

initial population: 

𝑃02 = (

 𝑢1

…
𝑢𝑛𝑢𝑚

) 

In this case, the size of the initial population is (𝑛𝑢𝑚, 1) and the 

model parameters are those obtained in the first optimisation 

problem. The evolution of the estimated model parameters is 

illustrated in Fig. 4 (case 1) and Fig.5 (case 2), it can be seen 

that for the two cases the values of 
1a  and 

1b  are always remain 

in the constraint interval. 
TABLE I  

FUNCTION NAME OF EACH LIBRARY USED IN PREDICTIVE ALGORITHM 

Function name Role of peripherals 

Grapigcs_open Initialize LCD screen 

graphics_get_visible_canvas Get screen active 

graphics_fill_canvas Give color to screen 
background 

B. Discussion 
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The synthesis results of the RPC algorithm implementation on 

the FPGA are very important for the conception to know the 

occupation rate concerning the internal resources of the FPGA, 

such as the number of slices, clocks, etc. Table II summarizes 

the hardware resources used to implement the RPC algorithm 

on the FPGA. About 50% of the RAM on the FPGA chip is 

used, and this value can be considered lightly lower compared 

to the large number of mathematical operations of the genetic 

predictive algorithm. Besides, 23% of total LUTs (Look-Up 

Table) with 4 inputs are used. This is important for envisaging 

other more complex treatments. 

In this study, the influence of the population size parameter n, 

the stopping parameter num and the prediction horizon 𝑁𝑦 on 

the performances of the RPC controller are investigated. 

 Case 1: first, it is required to investigate the influence 

of Ny on the performance of the RPC. Fig. 6 illustrates the 

evolution of the output y(k) and the input control u(k) for 

different values of the prediction horizon Ny (Ny=3 and Ny=7). 

These results demonstrate that the output reaches the retained 

set-point. It can be seen that the response time for Ny=7 is higher 

than that noted in the case where Ny=3 (Fig. 6). In fact, when 

Ny=3, the response reaches the point of stability after about 10 

iterations but for Ny=7 the output stabilizes after 20 samples 

time. In the second experiment, the aim is to test the influence 

of the population size parameter n and the stopping parameter 

num. Fig. 7 depicts the evolution of the output y(k) and the input 

control u(k) when n is decreased from 300 to 100. Comparing 

the paces, it can be seen also that when n is equal to 300 the 

FPGA-RPC controller will give a better performance. Two tests 

are done for the influence of the num parameter. First, when the 

population size parameter is important (n= 300), Fig. 8 presents 

the evolution of system when num increases from 10 to 50, it 

can be noted that between the two pictures there is no big change 

and it come down to the important value of n. Second, when n 

is quite small (n=100), Fig. 9 depicts the evolution of the output 

and the input when the stopping parameter num is decreased 

from 50 to 10, right here the difference is remarkable and it can 

be seen that the FPGA-RPC controller will produce a better 

performance when num is equal to 50. The choice of the 

parameter n and num is for the two genetic algorithms, and the 

filling of the first population is done randomly. 

 Case 2: Fig. 11 presents the evolution of the system for 

n = 300 and num = 50 when the parameters a1 and b1 are 

variables. In this example, it is remarkable the effectiveness of 

the algorithm by seeing that the output follows the set-point and 

the error is almost null. It is noticeable that the average time 

required for computing the control input U in each sample time 

is 1s  for n=100 and num=50 but also for n=300 and num=50 is 

about 3s. Therefore, it can be concluded that the implementation 

of the RPC using the GA gives an alternative to control faster 

systems. 

V. CONCLUSIONS 

In this work, linear approach of robust predictive control 

based on ARIMA model has been implemented into a map 

Nanoboard 3000XN supported a Xilinx FPGA. To take into 

account the uncertain dynamic of the process which leads to 

resolution a non-convex optimization problem, parameters and 

polytopic uncertainties are considered. A global non-

determinist optimization algorithm is proposed to resolve this 
problem such as the genetic algorithm. The simulation results 

show that by solving the min-max problem with the proposed 

optimized approach approve that the output reaches the retained 

set-point with good performances in terms of pursuit error, rise 

and response times. 
TABLE II 
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Fig. 4 case 1: Evolution of model estimated parameters 

 
Fig. 5 case 2: Evolution of model estimated parameters 

 
Fig. 6 case 1: Evolution of the output y and the control input u for n=300, 

num=50, Ny=7 and Ny=3 

 
Fig. 7 case 1: Evolution of the output y and the control input u for n=300 and 

n=100, num=50, Ny=3 

 
Fig. 8 case 1: Evolution of the output y and the control input u for n=300, 

num=50 and num=10, Ny=3 

 
Fig. 9 case 1: Evolution of the output y and the control input u  for n=100, 

num=50 and num=10, Ny=3 

 
Fig. 10 case 2: Evolution of the output y and the control input u for n=300, 

num=50, Ny=3 
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