
Implementation of Robust Predictive Controller on FPGA device

TELMOUDI BRINI Sirine1, BOUZOUITA Badreddine2, BOUANI Faouzi1

1 Tunis El Manar University, National Engineering School of Tunis, Tunisia,

LR11ES20 Laboratory of Analysis Conception and Control of Systems, Tunis, Tunisia.
2 University of Sousse, National Engineering School of Sousse, Tunisia

Sirinebrini@gmail.com, badreddine.bouzouita@enit.rnu.tn, faouzi.bouani@enit.rnu.tn

Abstract— Implementation of a linear Robust Predictive

Controller (RPC) into a FPGA with 20 MHz fixed clock is

presented in this work. The design of the controller is based on a

single input-single output Auto Regressive Integrated Moving

Average (ARIMA) Model. To take into account the uncertain

systems behaviour, the parametric polytopic uncertainties are

adopted. Supported on worst case strategy, by the resolution of a

min-max optimization problem the control law is obtained. Since

the performance criterion to be optimized is non-convex, a non-

determinist global optimization method based on Genetic

Algorithms (GA) is proposed to solve this problem. The efficiency

of the proposed approach is demonstrated with the RPC

implementation on a Nanoboard 3000XN FPGA platform chip

using the Altium Designer such a conception environment.

Keywords— FPGA, Robust Predictive Control, global optimization,

Genetic Algorithm, Altium Designer.

I. INTRODUCTION

Some control technique requires a numerical model
intending to predict the future behavior of the system [1].

Thereby, the precision degrees of the considered model cheek a

significant role on the controller effectiveness. Therefore, it is

necessary to use a controller which ensures the desired

performances in the presence of uncertainties [9]. In this case,

we talk about robust control. Certainly, predictive control took

advantage to exploit systems power of embarked systems on the

control processes and also the evolution of the optimization

algorithms which became faster [2].

In real-time applications managed using intelligent

technology, with the technological advancement in the field of
microelectronics, new hardware design solutions such as Field

Programmable Gate Array (FPGA), Application Specific

Integrated Circuit (ASICs) are available and can be used as

digital targets for implementation of the control algorithms in a

single component [7], [8]. The advantages of such an

implementation are multiple: the reduction of the execution

time by adopting parallel processing, the rapid prototyping of

the numerical control on FPGA, the confidentiality of the

architecture [13], the possibility of applying intelligent

commands that have recourse to heavier techniques in terms of

computing time and improving the quality of control of

industrial process by exploiting the new digital systems
technologies [17]. Nowadays, all of these advantages form a

need and a necessity for the control of industrial systems

characterized by high performance [15]. The concept of

robustness has emerged to handle a set of analysis and synthesis

problems especially for systems, whose models aren’t precisely

known [12]. When the structure of the model is uncertain, by

adopting the worst case strategy, the calculation of the robust

predictive control law amounts to minimizing the maximum of

a criterion with respect to the control signal, taking into account

all the possible models described by the set of uncertainties such

as parametric uncertainties and polytopic uncertainties [5].

Therefore, the control law is obtained by solving a min-max
optimization problem [6]. The cost function to be optimized for

the robust predictive control is non-convex opposite the

uncertainties. Also by using a local optimization technique non

optimal control law is obtained. So we proposed global

optimization algorithms as genetic algorithms (GA) method [3],

[14] which uses stochastic rules and decisions in order to

provide the global solution and has known a considerable

interest in predictive control.

It is in this spirit that we develop this work which is

interested in the synthesis of a robust control law implemented

into Nanoboard 3000XN FPGA platform, based on a linear and

uncertain ARIMA model which can manipulate unstable open
loop systems and decrease the number of model parameters.

The remainder of the paper is organized as follows: section II

presents theoretical formulation of RPC. Section III gives the

details of RPC algorithm implementation on FPGA. Section IV

shows simulation results. The conclusion is provided in section

V.

II. PROBLEM FORMULATION OF RPC

A. Linear model

In this section, the output predictions are presented by

ARIMA model:

-1

-1

B(q)
Δy(k)= Δu(k)

A(q)
 (1)

where y(k) is the system output and u(k) is the system input. The

term -1Δ= 1- q

is the integral action that allows the cancellation

of the static error. A(q-1) and B(q-1) are polynomials of degrees

respectively na and nb in backward shift operator q-1 which are

bounded and uncertain to take into account the uncertain

behavior of the system. These polynomials are given as follows:

 
na

-1 -i

i i i i a

i=1

A q = 1+ a q , a a ,a ,i = 1,…,n 
 

(2)

nb
-1 -i

j j j b

j=1

B(q)= b q ,b b ,b , j = 1,…,n 
  j

(3)

with ai and a̅i are respectively the lower and the upper bounds

of ai, bj and b̅j are respectively the lower and the upper bounds

of bj.

Therefore, the output prediction 𝑦̂(𝑘 + 𝑗) can be obtained

by a multiple recursion using relation (1):

mailto:Sirinebrini@gmail.com
User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.24-29

ˆ
j

j -i+1 l

i=1

y(k + j)= g Δu(k +i -1)+ y (k + j) for 𝑗 ≥ 1 (4)

with:

1 1

j-1

j j i-1 i j -i

i=1

g = b

g = b + (a - a)g









 (5)

and:

na nb

l i i

i=1 i=2

min(j-1,na)nb

l j-1 i i-1 i l

i= j+1 i=1

y (k +1)= y(k)- a Δy(k +1- i)+ b Δu(k +1- i)

y (k + j)= a y(k)+ b Δu(k + j - i)+ (a - a)y (k + j - i)








 

 

(6)

B. Control law

Robust predictive control requires online optimisation of the

following min-max optimisation problem:

 min max
ΔU ψ

- J (7)

where ∆𝑈 is the vector of future optimized control increments,

ψ represents the set of uncertainties and J denotes the desired

performances and presented by the following Quadratic

Problem (QP) [23]:

N -1

2

c

j=0

J = (y (k + j)- y(k + j)) + λ Δu(k + j)


 2ˆ
y u

i

N

j N

 (8)

with 𝑦̂(𝑘 + 𝑗): predicted output. 𝑦𝑐(𝑘 + 𝑗): set point. 𝜆:

weighting on the future increment control. Δ : incremental

operator. ()u k : the input control. ,y uN N and
iN denote the

output prediction horizon, control horizon and the initial

prediction horizon respectively.

We can solve the optimisation problem (7) in two steps;

starting by the calculation of the parameters that maximize the

cost function J , and next, we minimise it facing the input

control:

 *min max min

ΔU ΔUψ
- J = J ΔU (9)

with   max*

Ψ
J ΔU = J (10)

We can show that the cost function J to be optimized is

non-convex opposite the adopted uncertainties. Therefore, the

optimization problem (10) is non-convex. The use of a local

optimization method such as the gradient algorithm leads to

non-optimal control law. In the next section, we propose global

optimization algorithm to solve this problem.

C. Genetic Algorithms

Genetic algorithms (AG) are stochastic optimization

algorithms based on the mechanisms of natural selection and

genetics [14]. However, the natural processes to which they

refer are much more complex. The individual in a population is

represented by a chromosome consisting of genes that contain

the hereditary characteristics of the individual. The principles of

selection, crossing and mutation are inspired by natural
processes of the same name.

To use a genetic algorithm on a particular problem, the

following elements must be available:

 Codification:

This step consists to describe each individual by a string of

alphabet which can be binary, real, symbol or any other [3]. In

this work we have chosen the real codification because our

parameters are real. This description is called chromosome and

a set of chromosome presents a population.

 Fitness function:

The variable to be optimized can be, for example,

consumption, yield, transmission factor, profit, cost,

development time etc. Thus, an optimization algorithm requires

the definition of a function called fitness function which allows

evaluating of the potential solutions from the variable to be

optimized. As a result, the algorithm converges towards an

optimum of this function [3].

 Generation of a new population:

The initial population
0pop is generated randomly, then for

each individual the evaluation function
if is calculated; from it

we obtain the new population using the three genetic steps

illustrated as follow:

- Selection: the aim of selection is to retain the best individuals

to ensure the convergence of the algorithm. Tournament

selection is an alternative to proportional selection. This step is

described in algorithm 1.

Algorithm 1: selection step of GA

1: Evaluation of population individuals: 𝑓𝑗

2: Calculate the total sum of population:
1

n

j

j

F f




 𝑛: number of population chromosomes.

3: Calculate the selection probability:
j

jP
F

f


4: Calculate the cumulative probability: 𝑞𝑗 = 𝑃1 + ⋯ + 𝑃𝑗

5: Beginning selection:

 Generate randomly 0 ≤ 𝑟 ≤ 1

 If 𝑟 < 𝑞1 then select the chromosome 𝑃0

 Else

o for j from 1 to n

o If 𝑞𝑗−1 ≤ 𝑟 ≤ 𝑞𝑗

o then select the chromosome 𝑃𝑗

o End if

o End for

 End if

6: End selection

- Crossover: the crossing operator is active, with a probability

cP , a pair of parent chromosomes
1P and

2P returns a

chromosome child 𝐶 using the arithmetic crossing. The
recommended values for the crossover probability parameter

are 0.95cP  from [9] and  0.75,0.95cP  from [10]. In this

step, the population will be divided on two parts, the

chromosomes of the first part will be cross two by two, and the

chromosome children obtained from each cross will be injected

User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.24-29

into the second half of the population as it is shown in the

algorithm 2. the arithmetic crossing is defined by:

  c 1 c 2C = P P + 1- P P (11)

Algorithm2: Crossover step of GA

1: Define the crossover probability parameter
cP

 For i from n/2 to n do

1 2() (1)c n i c n iC i P P P P     

 End for

Mutation: in order to furnish genetic diversity, with a

probability
mP , this step enables the spontaneous transform of

an individual, which randomly generates directions that are

adaptive with respect to the last successful or unsuccessful

generation, is considered. This step is described in algorithm 3.

Algorithm3: Mutation step of GA

1: Define the mutation probability parameter
mP

2: Generate randomly 0 1r  :

 For i from 0 to n/2 do

 If
mr P then

0() (0)nextPOP i POP

 with
nextPOP is the next population.

End if

 End for

 Stopping conditions:

Stopping the algorithm is conditioned by the validation of
certain criteria which may be the maximum number of

generations or when the individuals of a population don’t evolve

more rapidly or the maximum time of execution or even a

combination of these criteria.

III. IMPLEMENTATION OF LINEAR RPC ON FPGA

This section presents the method to implement the RPC

algorithm on the Map Nanoboard 3000XN supporting Xilinx

FPGA.

A. Nanoboard 3000XN

The Nanoboard 3000XN map with a fixed Xilinx Spartan-

3AN device (XC3S1400AN-4FGG676C) is crucial for the

speedy progression of the systems embedded with the Altium

Designer. It is a platform of a reprogrammable design material

that exploits the power dedicated to the electronic conception of

high capacity, allowing the fast implementation and the

debugging of our interactive conceptions [16]. This map is

constituted by several material modules which realize

miscellaneous tasks according to the designer's needs, such an

integrated color TFT LCD panel (240x320), an SVGA interface

(24-bits, 80 MHz), a programmable clock (6 to 200 MHz) and

a fixed one (20 MHz) both available to FPGA users, a 4-

channels 8-bits ADC, and 4-channels 8-bits DAC.
B. RPC conception

Fig. 1 presents the solution for the custom hardware. The

predictive algorithm is implemented in C++ and compiled for a

Nanoboard 3000XN XC3S1400AN-4FGG676C FPGA. In

addition, a TFT screen shows the evolution of the output and

control action.

 The first step of the prediction process is for a sample cycle k
such that the FPGA calculates the output data 𝑦(𝑘) of the

system.
 The second step consists to maximize the cost function J to

estimate the optimal model parameters 𝑎𝑖 𝑜𝑝 and 𝑏𝑗 𝑜𝑝 , using

the GA such a non determinist optimized method.
 In the next step, the state observer prepares the data

calculating the free responses 𝑦𝑙 to feed into the genetic

algorithm Min-Max-Problem(Min-Max-P) solver.

 Then the Min-Max-P is solved to give a new sequence of the

control action. Only one control signal, 𝑢(𝑘) is implemented
on the plant while the others are rejected, due to the next

sampling instant, 𝑦(𝑘 + 1) is known.

 The LCD screen is used to display the evolutions of output

and control action signals.

 The first step is repeated with the updated value and all

sequences are brought up to date.

Fig. 1: Structure of the implemented RPC.

C. Hardware architecture

The model given in Fig. 2 approves the designer to construct a

processor-based system with a more rational and abstract

approach. In this design, a processor TSK3000 is founded to

ensure the execution of a software application, which is a 32-

bit RISC processor. Most of its instructions are 32 bits wide and

run in a single clock cycle. Moreover, there is a memory SRAM

to store the data, a controller TFT_VGA to pilot the display of

signals on the LCD screen, and two wishbones (one for

interconnection and one for arbitration).

D. Software architecture

The important step in the software process is the choice of

libraries, as the absence of one library can generate some errors

at compilation, so the user must comprehend the utility of each

unit before using it [16]. The LCD module of the card

Nanoboard 3000XN is utilized where the function name of each

library provided by the map shown in Table I is needed.

User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.24-29

In order to use the RPC controller algorithm, the steps illustrated

in the flowchart of Fig. 3 must be followed.

Fig. 2: Hardware architecture for RPC

Fig. 3: Flowchart of the robust predictive control algorithm

IV. SIMULATION RESULTS

In this section, linear robust predictive controller based on

ARIMA model proposed in this work is implemented into the

map Nanoboard 3000XN which support an FPGA from the

Xilinx family. The RPC scheme is designed with the following

parameters:

- ARIMA model:
-1

-1

B(q)
Δy(k)= Δu(k)

A(q)

where :

 -1A q = 1+a q , 1

1
-1B(q)= b 1

1q

- Constraints on input signal: 0 () 5v u k v 

- Constraints onto parameters 𝑎1 and 𝑏1:

10.99 0.4a   

and

10.4 0.8b 

- Fitness function: is defined by the cost function to be

optimized.

- Population size: is defined by the parameter n. A several test

are used to determine the optimal size.

- Stopping criteria: is defined by the parameter num and it's

specified by the maximum number of generations.

- Crossover and mutation probabilities: P = 0.3m and

P = 0.75c

Two cases are envisaged to test the efficient of the GA.

Case 1: 𝑎1 and 𝑏1 are fixed

We suppose that the system is characterized by the following

fixed parameters:
1 1a = -0.97, b = 0.6 for i=1, .., 100

Case 2: 𝑎1 and 𝑏1 are variables

Assume that the system used is characterized by the following

parameters:
1 1a = -0.97, b = 0.6 for i=1, .., 30

1 1a = -0.5, b = 0.4 for i=31, ..., 70

1 1a = -0.97, b = 0.6

for i=71, ..., 100

It should be noted that for the two cases even if the parameters

𝑎1, 𝑏1 and 𝑢 are multiplied by the crossover probability

parameter in the genetic algorithm, their values always remain

in the constraint interval and by the consequence children are
always feasible with respect to linear constraints and bounds.

A. Model parameters estimation

To solve the optimisation problem (7), calculation of the

parameters that maximize the cost function J is required. In

this step the genetic algorithm is used as a global optimization

method to find, at each iteration, the model parameters. The size

of the initial population is dim (𝑃0) = (𝑛𝑢𝑚, 3) and it's defined

as follows:

11 11 1

0

1 1num num num

a b u

P

a b u

 
 

  
 
 

The first and the second columns are reserved to the model

parameters and the third one is dedicated to the control input.

For each population individual  i 1i 1i iind = a ,b ,u ,i = 1,…,num

, we compute the prediction sequence  ˆ y k + j , yj = 1…N

and we evaluate the performance criterion J given by (8). Based

on the criterion values (fitness), the GA operators (selection,

crossover and mutation) are applied in order to find the next

population individuals. The procedure will be repeated until a

stopping criterion is reached. Then, the parameters of the worst

case model are obtained.

For the second optimization problem, we use the following

initial population:

𝑃02 = (

 𝑢1

…
𝑢𝑛𝑢𝑚

)

In this case, the size of the initial population is (𝑛𝑢𝑚, 1) and the

model parameters are those obtained in the first optimisation

problem. The evolution of the estimated model parameters is

illustrated in Fig. 4 (case 1) and Fig.5 (case 2), it can be seen

that for the two cases the values of
1a and

1b are always remain

in the constraint interval.
TABLE I

FUNCTION NAME OF EACH LIBRARY USED IN PREDICTIVE ALGORITHM

Function name Role of peripherals

Grapigcs_open Initialize LCD screen

graphics_get_visible_canvas Get screen active

graphics_fill_canvas Give color to screen
background

B. Discussion

User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.24-29

The synthesis results of the RPC algorithm implementation on

the FPGA are very important for the conception to know the

occupation rate concerning the internal resources of the FPGA,

such as the number of slices, clocks, etc. Table II summarizes

the hardware resources used to implement the RPC algorithm

on the FPGA. About 50% of the RAM on the FPGA chip is

used, and this value can be considered lightly lower compared

to the large number of mathematical operations of the genetic

predictive algorithm. Besides, 23% of total LUTs (Look-Up

Table) with 4 inputs are used. This is important for envisaging

other more complex treatments.

In this study, the influence of the population size parameter n,

the stopping parameter num and the prediction horizon 𝑁𝑦 on

the performances of the RPC controller are investigated.

 Case 1: first, it is required to investigate the influence

of Ny on the performance of the RPC. Fig. 6 illustrates the

evolution of the output y(k) and the input control u(k) for

different values of the prediction horizon Ny (Ny=3 and Ny=7).

These results demonstrate that the output reaches the retained

set-point. It can be seen that the response time for Ny=7 is higher

than that noted in the case where Ny=3 (Fig. 6). In fact, when

Ny=3, the response reaches the point of stability after about 10

iterations but for Ny=7 the output stabilizes after 20 samples

time. In the second experiment, the aim is to test the influence

of the population size parameter n and the stopping parameter

num. Fig. 7 depicts the evolution of the output y(k) and the input

control u(k) when n is decreased from 300 to 100. Comparing

the paces, it can be seen also that when n is equal to 300 the

FPGA-RPC controller will give a better performance. Two tests

are done for the influence of the num parameter. First, when the

population size parameter is important (n= 300), Fig. 8 presents

the evolution of system when num increases from 10 to 50, it

can be noted that between the two pictures there is no big change

and it come down to the important value of n. Second, when n

is quite small (n=100), Fig. 9 depicts the evolution of the output

and the input when the stopping parameter num is decreased

from 50 to 10, right here the difference is remarkable and it can

be seen that the FPGA-RPC controller will produce a better

performance when num is equal to 50. The choice of the

parameter n and num is for the two genetic algorithms, and the

filling of the first population is done randomly.

 Case 2: Fig. 11 presents the evolution of the system for

n = 300 and num = 50 when the parameters a1 and b1 are

variables. In this example, it is remarkable the effectiveness of

the algorithm by seeing that the output follows the set-point and

the error is almost null. It is noticeable that the average time

required for computing the control input U in each sample time

is 1s for n=100 and num=50 but also for n=300 and num=50 is

about 3s. Therefore, it can be concluded that the implementation

of the RPC using the GA gives an alternative to control faster

systems.

V. CONCLUSIONS

In this work, linear approach of robust predictive control

based on ARIMA model has been implemented into a map

Nanoboard 3000XN supported a Xilinx FPGA. To take into

account the uncertain dynamic of the process which leads to

resolution a non-convex optimization problem, parameters and

polytopic uncertainties are considered. A global non-

determinist optimization algorithm is proposed to resolve this
problem such as the genetic algorithm. The simulation results

show that by solving the min-max problem with the proposed

optimized approach approve that the output reaches the retained

set-point with good performances in terms of pursuit error, rise

and response times.
TABLE II

RESOURCES UTILIZATION OF RPC ALGORITHM

REFERENCES

[1] B. Stellato, T. Geyer and J. G. Paul, “High-Speed Finite Control Set Model

Predictive Control”, IEEE Transactions on Power Electronics, Mai, Vol.

32, No. 5, pp. 4007-4020, 2017.

[2] B. Yang, T. Yu, H. Shu, J. Dong and L. Jiang , “Robust sliding –mode

control of wind energy conversion systems for optimal power extraction
via nonlinear perturbation observers”, Applied Energy, Vol. 210, pp.

711-723, January 2018.
[3] D. E. Goldberg, “Genetic Algorithm in Search, Optimisation and Machine

Learning”, Addison- Wesley Pub. Co., 1989.
[4] D. Lamburn, P. Gibbens and S. Dumble, “Explicit efficient constrained

model predictive control”, International Journal of Automation and
Control, Vol. 10, No.14, pp. 329 - 355, 2016.

[5] D. Munoz de la Pena, T. Alamo, D. R. Ramırez, E. F. Camacho ,“Min-Max
Model Predictive Control as a Quadratic Program”, IET Control Theory

& Applications, Vol. 1, No. 1, pp. 328-333, 2007.
[6] D. R. Ramıirez, E. F. Camacho and M. R. Arahal, “Implementation of min-

max MPC using hinging hyperplanes application to a heat exchanger”,
Control Engineering Practive, Vol. 12, No. 9, pp. 1197-1205, 2004.

[7] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. Kerrigan and G.
Constantinides, “Predictive control using an FPGA with application to

aircraft control”, IEEE Transactions on Control System Technologic,
Vol. 22, No. 3, pp. 1006–1017, 2015.

[8] F. Xu, H. Chen, X. Gong and O. Mei, “Fast Nonlinear Model Predictive
Control on FPGA Using Particle Swarm Optimization”, IEEE

Transactions on Industrial Electronics, Vol. 63, No. 1, pp. 310-321, 2016.
[9] J. B. Rawling and D. Q. Mayne, “Model Predictive Control: theory and

design”, Nob hill publishing, LlC, 2009.
[10] J. J. Grefensette, “Optimization of control parameters for genetic

algorithms”, IEEE Transaction on Man and Cybernetics, SMC, Vol.16,
No. 1, pp. 122-128, 1986.

[11] J. Shaffer, R. Caruana, L. J. Eshelman and R. Des, “A Study of Control

Parameters Affecting Online Performance of Genetic Algorithms for
Functions Optimization”, 3rd International Conference on Genetic

Algorithms, Morgan Kaufman, San Mateo, CA, PP.51-60, 1989.

[12] J. Guo and L. Dong, “Robust load frequency control for uncertain

nonlinear interconnected power systems”, International Journal of
Automation and Control, Vol. 11, No. 3, pp. 239-261, 2017.

Used Logic Used Available % of use

Number of slice flip flops 2,262 22,528 10%

Number of slices 3,074 11,264 27%

Number of LUTs (4 inputs) 4,942 22,528 21%

Total LUTs (4 inputs) 5,529 22,528 23%

Number of input /output
blocks

145 502 28%

Number of BUFGMUXs 2 24 8%

Number of RAMB 16BWEs 16 32 50%

http://www.inderscience.com/info/inarticletoc.php?jcode=ijaac&year=2016&vol=10&issue=4
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4079545
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4079545
http://www.sciencedirect.com/science/article/pii/S0967066103002855#!
http://www.sciencedirect.com/science/article/pii/S0967066103002855#!
http://www.sciencedirect.com/science/article/pii/S0967066103002855#!
http://www.inderscience.com/filter.php?aid=84847
http://www.inderscience.com/filter.php?aid=84847
User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.24-29

[13] M. Ricco, P. Manganiello, E. Monmasson, G. Petrone and G. Spagnuolo,

“FPGA-Based Implementation of Dual Kalman Filter for PV MPPT
Applications”, IEEE Transactions on Industrial Informatics, Vol. 13, No.

1, pp. 176-185, 2017.

[14] S. P M. Alinodehi, S. J. Louis, S. Moshfe and M. Nicolescu, “A Modified
Steady State Genetic Algorithm Suitable for Fast Pipelined Hardware”,

IEEE Congress on Evolutionary Computation, 5-6 June, Sain sebastian,
Spain, 2017.

[15] S. Lucia, D. Navarro, O. Lucia, P. Zometa and R. Findeisen, “Optimized

FPGA Implementation of Model Predictive Control for Embedded
Systems Using High Level Synthesis Tool”, IEEE Transactions on

Industrial Informatics, Vol. 14, No. 1, pp.137-145, 2017.

[16] T. S. Brini, B. Bouzouita and F. Bouani, “FPGA Implementation of a
Model Predictive Control: Application to a control system of water

level”, The 3rd International Conference on Automation, Control
Engineering and Computer Science (ACECS), March 20-22,

Hammamet, Tunisia, 2016.

[17] X. J. Wu, X. J. Zhu, G.-Y. Cao and H.-Y. Tu, “Predictive control of sofc
based on a ga-rbf neural network model”, Journal of Power Sources,

Vol. 179, No. 1, pp. 232-239, 2007.

Fig. 4 case 1: Evolution of model estimated parameters

Fig. 5 case 2: Evolution of model estimated parameters

Fig. 6 case 1: Evolution of the output y and the control input u for n=300,

num=50, Ny=7 and Ny=3

Fig. 7 case 1: Evolution of the output y and the control input u for n=300 and

n=100, num=50, Ny=3

Fig. 8 case 1: Evolution of the output y and the control input u for n=300,

num=50 and num=10, Ny=3

Fig. 9 case 1: Evolution of the output y and the control input u for n=100,

num=50 and num=10, Ny=3

Fig. 10 case 2: Evolution of the output y and the control input u for n=300,

num=50, Ny=3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

W
a
te

r
L

e
v
e
l
(L

)

y for n=300-num=50-Ny=3

y for n=300-num=50-Ny=7

set point

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

V
o

lt
a
g

e
 (

V
)

u for n=300-num=50-Ny=3

u for n=300-num=50-Ny=7

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

W
a
te

r
L

e
v
e
l
(L

)

y for n=300-num=50-Ny=3

y for n=100-num=50-Ny=3

set point

10 20 30 40 50 60 70 80 90 100
0

0.5

1

V
o

lt
a
g

e
 (

V
)

u for n=300-num=50-Ny=3

u for n=100-num=50-Ny=3

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

W
a

te
r

L
e

v
e

l
(L

)

y for n=300-num=50-Ny=3

y for n=300-num=10-Ny=3

set point

10 20 30 40 50 60 70 80 90 100
0

0.5

1

V
o

lt
a

g
e

 (
V

)

u for n=300-num=50-Ny=3

u for n=300-num=10-Ny=3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

W
a
te

r
L

e
v
e
l
(L

)

y for n=100-num=50-Ny=3

y for n=100-num=10-Ny=3

set point

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

V
o

lt
a
g

e
 (

V
)

u for n=100-num=50-Ny=3

u for n=100-num=10-Ny=3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

W
a

te
r

L
e

v
e

l
(L

)

y for n=300-num=50-Ny=3

set-point

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

V
o

lt
a

g
e

 (
V

)

u for n=300-num=50-Ny=3

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7959755
User1
Typewritten Text
Copyright IPCO-2019
ISSN 2356-5608

User1
Typewritten Text
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.7 pp.24-29

